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１．Revisit of some of the results in Chino  
（2018b）
In Chino （2018b）, we discussed a bit about our 

difference equation model described by a set of 
non-linear dyadic difference equations described 
below, 

which is denoted as Eq. （11） in that paper.
As discussed there, this type of system has a 

very desirable property in that we can utilize the 
heritage of the theory of the complex dynamical 
system developed in mathematics directly in 
classifying its trajectories.  In fact, defining a new 
variable,  and transforming it 
linearly, we have a new system

where

and

The simplest system is such that = 0  in 
Eq. （2）.  To attain this value, we set the α ′s as 

=0.9564i, =- 1-0.9564i, =0.01, 
and 　　=1.5375-0.9564i.  
It is well known that the Julia set of this system 
is the unit circle with origin 0  in C （equivalently, 
H）, where C is the complex plane.  Moreover, 
it is easy to show that this system has two fixed 
points, 1  and 0 （the origin）, and these points 
are repelling and superattracting, respectively.
As a result, when we start from an arbitrary point 
on the unit circle except for the fixed point 1 , 
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the trajectory moves chaotically on the circle, at 
least theoretically.  （Notice that this circle is not a 
fractal since the unit circle is not self-similar.）  As 
a trial, we set the initial value of this system as i 
on the unit circle  in C, since this point is not the 
fixed point of the system.  As pointed out in Chino 
（2018b）, the strict Lyapunov exponent of this one-
dimensional system,  is λ= ln ２ 
= 0.69314718…, thus the system has chaos.
Next, we proceeded to examine qualitative 

behaviors of the original dyadic system described 

by Eq. （1）.  Fig. 1  shows trajectories of the four 
indices of the original dyadic system.
First, we computed the largest Lyapunov 
exponent of this dyadic system.  Fig. 2  shows it.  
It converges to 0.693147148…, which is very close 
to that of the linearized system  
discussed above.  This result clearly shows that the 
dyadic system has chaos.
Second, we shall zoom up trajectories shown 
in Fig. 1  to examine further the features of these 
trajectories.  For example, Fig. 3  shows the 
expanded trajectories of the third time series in Fig. 
1  from iteration 45,000 to 46,000.  This trajectory 
is reminiscent of one-dimensional random walk or 
Brownian motion （Brown, 1828）.

Fig. 1.  Trajectories of the four indices of the original 
dyadic system.  10-a and 10-b are those of node j 
（member A） and node k （memberB）, respectively.  
10-c is the trajectory of the proximity from node j to 
node k.  10-d is the trajectory of the angle from node 
j to node k.  （This figure is reproduced from Fig. 10 in 
Chino （2018b）.

Fig. 2.  The largest Lyapunov exponent of the original 
two dimensional system （This figure is reproduced 
from Fig. 11 in Chino （2018b）.

Fig. 3.  Expanded trajectories of Fig. 1 -c from iteration 
45,000 to 46,000 （This figure is reproduced from Fig. 
12 in Chino, 2018b）.

Fig. 4.  Simultaneous plot of the two trajectories  shown 
in Figs. 13 and 14 in Chino （2018b）.
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Third, we show trajectories of the dyadic 
system after 50,000 iterations.  Fig. 4  shows the 
simultaneous plot of the trajectories of the two 
objects （nodes） using different colors, yellow and black.
Fig. 4  shows that the trajectories of two nodes 

are very close to each other.  This point may be 
contrasted with those of the usual random work as 
well as the Brownian motion.  
To compare the trajectories of our dyadic system 

with those of the random walk and the Brownian 
motion, we draw Figs. 5  and 6 , which are 
trajectories of a simple random walk on the x-axis 
and a planar Brownian motion on the y-axis.
Figs. 7 and 8 are trajectories of a two-dimensional 

random walk and a planar Brownian motion after 

20,000 iterations.
It is interesting to note that trajectories of our 
special dyadic system are reminiscent of the 
random walk or the Brownian motion.
In the following sections we abbreviate the 
fractal dimension as DF , the Hausdorff-Besicovitch 
dimension as DHB , the topological dimension as 
DT , and the Euclidean dimension as DE .

２．Mathematical properties of random walk
Random walk was introduced by Pearson （1905）.  

A special random walk in the one-dimensional case 
is called the simple random walk .  Assuming the n 
independent random variables, , ,…, , having 
values - 1  or 1  （step size equals 1）, the simple 

Fig. 5.  Trajectories of a simple random walk on the 
x-axis.

Fig. 6.  Trajectory of a planar Brownian Motion in 
y-axis after 20000 iterations.

Fig. 7.  Two-dimensional random walk after 20000 
iterations.

Fig. 8.  Planar Brownian motion after 20000 iterations.
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random walk on Z is defined as,

The random variable  has the following 
expectations: =0, and 
If the step size approaches to zero in the simple 

random walk, we have the one-dimensional Wiener 
process , , and the density function is written as

This process is equivalent to the physical 
Brownian motion in the one-dimensional case 
which will be discussed in the next section.
Random walk has no scale invariance, and thus 

is not self-similar .  It is sometimes called a 
statistically self-similar （e.g., Mandelbrot, 1977）.  
Moreover, in one-dimensional random walk （i.e., 
the simple random walk）, both the fractal 
dimension （DF） and the topological dimension 
（DT）are 1 ’s（De Gennes, 1979）.  Therefore, it is not 
a fractal  （i.e., DF =DT ）.  It is sometimes called the 
discrete fractal .  In the two-dimensional random 
walk, DF is 4/3 （de Gennes, 1979）, and DT is 1 , 
thus it is a fractal  （i.e., D F > DT）.  Since the 
variance of the random walk diverges, it is not a 
chaos .

３．Mathematical properties of Brownian 
motion

The so-called Brownian motion can be classified 
into two categories.  One is the physical Brownian 
motion  （e.g., Mandelbrot, 1977）, and the other 
the fractional Brownian motion （fBm）.  Physical 
Brownian motion is named after Brown （1827）, 
while fBm was proposed by Mandelbrot and Van 
Ness （1968）.  According to them, the notion of 
fBm has already been considered elsewhere （Hunt, 
1951; Kolmogorov, 1940; Lamperiti, 1962; Yaglom, 
1958）.

３．１  Physical Brownian motion
This is the random motion of tiny particles 

suspended in a fluid.  Physically, it is thought of 
as a diffusion process, one-dimensional Brownian 
motion which Einstein （1905） described as 

Mathematically, physical Brownian motion is a 
Gaussian process  as one of the stochastic process 
（e.g., Hansen, 2018）, and historically it is also the 
Wiener process  introduced by Wiener （1923）.
More generally, a process is Gaussian  if 
all the finite dimensional marginal distribu- 
tions（fidi） are Gaussian function,  

as knowledge of these func 
tions allows us to write up every fidi.  Here, 
the covariance matrices constructed from the 
covariance functions have for instance to be 
symmetric  and positive semi-definite （p.s.d.） （e.g., 
Hunsen, 2018）.
For example, the two-dimensional Gaussian 
process,

is a Brownian motion for any ０ s t.  If we 
consider the increment  over the interval 
from s  to t , we have 

Eq. （7） is equivalent to Eq. （5） which Einstein 
（1905） deduced.
In the one-dimensional physical Brownian 
motion, the Euclidian dimension （DE） is 1 , DT is 
1 , and the Hausdorff-Besicovitch dimension （DHB） 
（i.e., DF） is 1.5 （Sprott, 2003）.  Therefore, the 
one-dimensional Physical Brownian motion is a 
fractal  （D HB > DT）.  In the two-dimensional physical 
Brownian motion DE is 2 , DT is 1 , and  DHB is 2  
（Mandelbrot, 1977）.  Therefore, the two-dimen- 
sional physical Brownian motion is not a fractal  
（DHB =DT）.  The physical Brownian motion is self-
similar, and is sometimes called, exactly self-similar  
（e.g., Sprott, 2003）.  Moreover, it is not a chaos, 
because it is a diffusion process.

３．２  Fractional Brownian motion （fBm）
According to Khoshnevisian （2018）, fBm is a 
generalization of the physical Brownian motion, 
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and has a special covariance function,

Here, α is the Hurst parameter  of X, and α > 0.  
The Hurst exponent H , which is introduced in 
Mandelbrot （1977） is equivalent to the Hurst 
parameter α , in which H is defined as

where R（d） is the sample average river discharge 
between years 0  and d, while S（d） is a scaling 
factor.  According to Mandelbrot （1977）, DHB is 
equal to the inverse of H, i.e., DHB =1/H.  If H is 
1/2, then it is nothing but a （two-dimensional） 
physical Brownian motion , and thus. DHB =２.
Moreover, fBm is a special case of the Gaussian 

process.  Falconer （2003） calls α the index of fBm.  
That is, he defines fBm of index-α（0<α<1） as a 
Gaussian process X: [0 , ] → R on some probability 
space such that 
（1）With probability 1 , X（t） is continuous and 

X（0）=0;
（2）For every t 0  and h>0  the increment 

X（t+h）－ X（t） has the normal distribution 
with mean zero and variance , so that

４．Conclusion
In this paper we propose an elementary theory 

of a dynamical weighted digraph.  In this theory 
we first assume that the weight matrix associated 
with a weighted digraph denotes the proximity 
strengths among nodes at any instant of time, and 
that it varies as time proceeds.  Then we apply 
HFM （the Hermitian Form Model） （Chino & 
Shiraiwa, 1993） to the weight matrix, and obtain 
the configuration of objects （nodes） at any instant 
of time in a p-dimensional Hilbert space,  or 
an indefinite metric space.  Here, we assume that 
the Hermitian matrix  corresponding to the weight 
matrix is positive-semidefinite , in the most general 
case and its weights are measured at a ratio level.  
Then, we have the correspondence among digraph, 
weight matrix, and configuration of objects （nodes）

at any instant of time.  As a result, changes in 
digraphs over time are considered as changes in 
configurations of nodes in  over time.
Our elementary theory of dynamic digraph then 
assumes that these changes in the configurations 
of nodes can be described by a set of complex 
nonlinear difference equations in  in the most 
general case.  The purpose of our theory is to 
classify elementary patterns of changes in digraphs 
over time, by assuming that there exists a latent 
process which governs these changes in digraph, 
which can be described by a set of complex 
nonlinear difference equations in .
In this paper, we restrict the dimension p of the 
state space to one, and conducted some simulation 
studies in order to classify elementary patterns of 
changes in digraphs over time.  It is easy to show 
that such patterns can be enumerated simply in the 
case when the latent dynamics are linear （Chino, 
2017a, b; Chino, 2018a, b）.  Our major results in 
this paper are concerned with the patterns in the 
case when the latent dynamics have quadratic 
terms especially in the case where N= 2 and 
q=2 in Eq. （1）.  As discussed elsewhere （Chino, 
2017a, 2018a, 2018b）, this type of system has a 
very desirable property in that we can utilize the 
heritage of the theory of the complex dynamical 
system developed in mathematics directly in 
classifying its trajectories.
In fact, the transformed new system of Eq. （1）, 

i.e., Eq. （2） becomes the Mandelbrot set
（Mandelbrot, 1977） in some cases.  In the 
companion paper （Chino, 2018b）, we have found 
that the original quadratic system Eq. （1） also 
exhibits chaotic behaviors  which are very similar to 
random walks and Brownian motions.  Therefore, 
in this paper we examine the similarities as well 
as differences among （1） random walks, （2） 
Brownian motions, and （3） our original quadratic 
system.
As regards the fractal property, one-dimensional 

（thus the simple） random walk has 
DF（DHB）=1 and DT =1 （De Gennes,1979）, and is 
not a fractal.  However, the two-dimensional 
random walk has DF（DHB）=4/ 3 and DT = 1 （De 

（8）

（9）
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Gennes,1979）, and is a fractal.  
One-dimensional physical Brownian motion has 

DF（DHB）=1.5 and DT =1 （e.g., Sprott, 2003）, and is 
a fractal.  But, the two-dimensional physical 
Brownian motion （i.e., ordinary Brownian motion） 
has DF （DHB）=2 and DT =2 （Mandelbrot, 1977）, 
and is not a fractal.  
The one-dimensional fBm has DF （DHB）= 2-α 

and DT =1 （Mandelbrot, 1977）, and is a fractal 
（Falconer, 2003）, where α is the index of fBm, or 
i s  a lso ca l led the Hurs t  parameter  （e.g. , 
Khoshnevisian, 2018）.  It is sometimes called the 
random fractal （Sprott, 2003）.  In contrast, the 
two-dimensional fBm’s has DF （DHB）=2  and DT =2 
（Mandelbrot, 1977）, and is not a fractal.
The boundary of the trajectory of the transformed 

one-dimensional complex system （i.e., Eq. （2）） of 
our quadratic system （i.e., Eq. （1））, which belongs to 
the Julia set in the unit circle with origin 0  in C 
（equivalently, one-dimensional Hilbert space）, is 
not a fractal geometrically .  
As for the self-similarity property, random 

walk has no scale invariance （Wikipedia, 2018） 
and thus is not self-similar.  In fact, a computer 
simulation of simple random walk by Higuchi’s 
method （Higuchi, 1988） shows that the log L（k） 
plotted against log k with base 2  is nonlinear in 
the whole range of abscissa.
Physical Brownian motion is self-similar （e.g., 

Sprott, 2003）.  Sometimes, it is called exactly self-
similar.
Our quadratic system described by Eq. （2） 

might probably be self-similar.  In fact, its computer 
simulation shows that all the four trajectories 
of this system shown in Fig. 1  are almost self-
similar, since all the log L（k）-log k plots of these 
trajectories by Higuchi’s method （Higuchi, 1988）
show almost linear in the whole range of abscissa 
（e.g., Fig. 9 , Fig. 10）.
As for the chaos property, not only random 
walks but also Brownian motions （which in-
clude physical Brownian motions as well as 
fractal Brownian motions, i.e., fBm） might not 
be chaos, since all of these trajectories diverge 
as time proceeds.  In contrast, the Lyapunov 
exponent （LE） of the trajectory of the transformed 
one-dimensional complex system of our original 
quadratic system computed numerically by a chaos 
software （i.e., Takahashi & Yamada, 2000） was 
very close to the theoretical Lyapunov exponents 
（i.e., ln 2）.  Moreover, the theoretical Lyapunov 
exponent of the original quadratic system was 
0.693147148276891, which is equivalent to the 
theoretical LE of the transformed one-dimensional 
system up to seven decimal places.  These results 
indicate that our original quadratic system has 
chaos.
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Fig. 10.  The log L（k） against k plot of the trajectories of the 
proximity from member A（node j） to member B（node k） 
in Figure 1-c by Higuchi’s method （Higuchi, 1988）.

Fig. 9.  The log L（k） against k plot of the trajectories of 
member A（node j）  In Figure 1 -a by Higuchi’s method 
（Higuchi, 1988）.



An elementary theory of

― 7 ―

The author is indebted to Gregory L. Rohe for 
proofreading of an earlier version of this paper.

References

Brown, R. （1827）.  A brief account of microscopical 
observations made in the months of June, July, 
and August, 1827 on the particles contain-ed in 
the pollen of plants; and on the general existence 
of active molecules in organic and inorganic 
bodies.
http://sciweb.nybg.org/science2/pdfs/Brownian.pdf.

Chino, N. （2017）.  Dynamical scenarios of changes 
in asymmetric relationships on a Hil-bert space.  
Proceedings of the 45th Annual Meeting of the 
Behaviormetric Society, September 1 , Shizuoka, 
Japan.

Chino, N. （2018a）.  An elementary theory of a 
dynamic weighted digraph.  Proceedings of the 
46th Annual Meeting of the Behaviormetric 
Society, September 4 , Tokyo, Japan.

Chino, N. （2018b）.  Dynamical scenarios of 
changes in asymmetric relationships over time 
（2）.  Bulletin of The Faculty of Psychological 
and Physical Science , 14, 23-31.
Chino, N. & Shiraiwa, K. （1993）.  Geometrical 
structures of some non-distance models for 
asymmetric MDS.  Behaviormetrika , 20, 35-4.

De Gennes, P. G. （1979）.  Scaling concepts in 
polymer physics .  New York: Cornell Uni-versity 
Press.

Einstein, A. （1905）.  Über die von der molekular
  kinetischen Theorie der Wärme gefor-derte 
Bewegung von in ruhenden Flüssigkeiten 
suspendierten Teilchen.  Annalen der Physik , 17, 
549-560.

Falconer, K. （2003）.  Fractal geometry .  2nd 
edition.  New York: Wiley.

Hansen, E. （2018）.  A lecture note: Weak 
Convergence 2013, Chapter 3  Gaussian process. 
http://web.math.ku.dk/~erhansen/WeakConv13/
doku/noter/kap3.pdf.

Higuchi, T. （1988）.  Approach to an irregular time 
series on the basis of the fractal theory.  Physica 

D , 31, 277-283.
Hunt, G. A. （1951）.  Random Fourier transforms, 
Transactions of the American Mathe-matical 
Society , 71, 38-69.
Khoshnevisan, D. （2018）. Gaussian Process. In 
Khoshnevisan, D., Gaussian Analysis ,  https://
www.math.utah.edu/~davar/math7880/S15/
Chapter6.pdf.
Kolmogorov, A. N. （1940）.  Wienersche Spiralen 
und einige andere interessante Kurven im 
Hilbertschen Raum, Proceedings of the USSR 
Academy of Sciences , 26, 115-118.
Lamperti, J. （1962）.  Semi-stable stochastic 
process, Transactions of the American Mathe-
matical Society , 104, 62-78.
Mandelbrot, B. B. （1977）.  The fractal geometry 
of nature .  San Francisco: W. H. Free-Man and 
Company.
Mandelbrot, B. B. & Van Ness, J. W. （1968）.  
Fractal Brownian motions, fractional noises and 
applications.  SIAM Review, 10, 422-437.

Pearson, K. （1905）.  The problem of the random 
walk.  Nature , 72, 342.
Sprott, J. C. （2003）.  Chaos and Time-Series 
Analysis .  Oxford: Oxford University Press.
Takahashi, J. & Yamada, T. （2000）.  Kaosu 
Jikeiletsu Kaiseki to Konpyuta [Chaos time series 
and computer].  Computer Today , No.99, 17-23.

Yaglom, A. M. （1958）.  Correlation theory 
of processes with random stationary n th 
increments, American Mathematical Society 
Transactions, Series 2 , 8 , 87-141.
Wiener, N. （1923）.  Differential-space, Journal of 
Mathematical and Physics , 2 , 132-174.
Wikipedia （2018）.  Brownian motion.  https://
en.wikipedia.org/wiki/Brownian_motion.

（Final version accepted on December 25, 2018）


