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Figure 1. The digraph associated with the weight matrix W3.
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Abstract

 This paper is the first part of the revised version of my handout presented elsewhere (Chino, 2018). In this 
theory we assume that the weight matrix denotes the proximity strengths among nodes at any instant of time, 
and that it varies as time proceeds. Then, applying the Hermitian Form model proposed by Chino and Shiraiwa 
(1993), we get the configuration of nodes at any instant of time in a p-dimensional Hilbert space, Hp, or an  
indefinite space. For simplicity, we assume that p=1 in this paper. Then, we have the correspondence among di-
graph, its weight matrix, and the configuration of nodes in a one-dimensional Hilbert space, H. The purpose of 
our theory is to classify elementary patterns of changes in digraphs (thus, in its weight matrices as well as in the 
corresponding configurations) over time, by assuming that there exists a latent process which governs these 
changes in the configurations of nodes, which can be described by a set of complex nonlinear difference equa-
tions in Hp in the most general case. We first revisit such patterns of changes in digraphs in the case when p=1 
and the difference equation is linear, which are shown elsewhere (Chino, 2017a, b; Chino, 2018). Our major  
results in this paper are concerned with these patterns in the case when the difference equation is quadratic. The 
quadratic system as well as its transformed quadratic system exhibit interesting chaotic behaviors under certain 
mild conditions. Relations of such behaviors to the random walk as well as the Brownian motion are discussed.

Keywords: complex difference equation, Hilbert space, Chino-Shiraiwa theorem, dynamic weighted digraph, 
chaos, trade imbalance, neural network.

1. Introduction

 Let us imagine a special matrix,        . It is 

an example of the magic square of order 3. If we consider 
the matrix as the weight matrix associated with a digraph, 
we can draw the digraph as follows, using, for example, 
MATLAB:
 As is well known, the weighted digraph is a digraph with 
weights specified at time n, which are attached to each di-
rected arc (or edge, link) between nodes (or vertices) as 
well as each loop of the digraph. In asymmetric MDS, 
nodes correspond to members of a group, while weights at-
tached to directed arcs correspond to the proximities among 
objects.
 Our elementary theory of a dynamic weighted digraph 
assumes that the weight matrix denotes the proximity 

strengths among nodes at any instant of time, and that it 
varies as time proceeds. If we apply HFM (the Hermitian 
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1. Introduction 

 Let us imagine a special matrix, 𝑊𝑊3 = (
8 1 6
3 5 7
4 9 2

) .  It is an example of the magic 

square of order 3.  If we consider the matrix as the weight matrix associated with a 
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Form Model) (Chino & Shiraiwa, 1993) to the weight ma-
trix, then we obtain the configuration of objects (nodes) at 
any instant of time in a p-dimensional Hilbert space, Hp or 
an indefinite metric space.
 Our theory assumes that the Hermitian matrix corre-
sponding to the weight matrix is positive semi-definite, in 
the most general case and its weights are measured at a ratio 
level. Then, we have the correspondence among digraph, 
weight matrix, and configuration of objects (nodes) at any 
instant of time:

 digraph ⇔ weight matrix ⇔ configuration of nodes in Hp

As a result, changes in digraphs over time are considered as 
changes in configurations of nodes in Hp over time. In this 
paper we shall assume that p is one, that is, a one-dimen-
sional Hilbert space, H.

Figure 2.   Trajectories of two members j (=A) and k (=B) on the 
complex plane in the special case when ajk = .001(1 + 
i), akj = −0.02(1 + i). This figure was reproduced from 
Figure 2–3 in Chino (2017a) as well as Figure 7 in 
Chino (2018).

 Let us now look at some of the literature which deals 
with the dynamical changes in digraphs over time. It can be 
divided into two categories, one using the differential equa-
tion model and the other the difference equation model. For 
example, McCann et al. (1998) proposed an interesting 
nonlinear differential equation model as a food-web model, 
in which they considered food-webs composed of three or 
four species, one being the top predator, another being a re-
source species, and the other being one or two consumer 
species. They examined the effects of interaction strengths 
on changes in densities of species over time. Interaction 
strengths are bifurcation parameters of their model. Results 
indicated that chaotic behaviors occur when the (relative) 

interaction strength takes below some value in a food web 
with multiple intermediate consumers.
 Chesson and Warner (1981) proposed a lottery model 
which is described by a set of nonlinear difference equa-
tions. This model explains a certain coexistence phenome-
non of species. However, these models merely deal with 
changes in numbers or density of species. Moreover, most 
of the network models proposed previously assume that the 
state space of the system is real, except for the complex 
neural network models.
 In contrast, our elementary theory of dynamic digraph 
then assumes that these changes in configurations of nodes 
can be described by a set of complex nonlinear differ-rence 
equations in Hp in the most general case. The purpose of 
our theory is to classify elementary patterns of changes in 
digraphs over time, by assuming that there exists a latent 
process which governs these changes in digraph, which can 
be described by a set of complex nonlinear difference equa-
tions in Hp.

2. Elementary theory of dynamic weighted digraph

 We describe the changes in N nodes over time by the fol-
lowing set of complex difference equations in a Hilbert 
space, Hp:
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We describe the changes in N nodes over time by the following set of complex difference 
equations in a Hilbert space, 𝐻𝐻𝑝𝑝: 

𝒛𝒛𝑗𝑗,𝑛𝑛+1 = 𝒛𝒛𝑗𝑗,𝑛𝑛 + ∑ ∑ 𝑫𝑫𝑗𝑗𝑗𝑗
(𝑚𝑚)𝒇𝒇(𝑚𝑚)(𝒛𝒛𝑗𝑗,𝑛𝑛 − 𝒛𝒛𝑗𝑗,𝑛𝑛)𝑁𝑁

𝑗𝑗≠𝑗𝑗
𝑞𝑞
𝑚𝑚=1 + 𝒈𝒈(𝒖𝒖𝑗𝑗,𝑛𝑛) + 𝒛𝒛0,               (1) 

where j and k range from1 to N, i.e., the number of nodes, and n indicates the iteration 
number.  This means that the coordinate of node j at (n+1)th iteration in H is assumed to 
be generated by node j at nth iteration plus the qth order polynomial of the difference 
between those of node j and node k at nth iteration, where k ranges from 1 to N except j. 

Moreover, 𝑫𝑫𝑗𝑗𝑗𝑗
(𝑚𝑚) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝛼𝛼𝑗𝑗𝑗𝑗

(1,𝑚𝑚), 𝛼𝛼𝑗𝑗𝑗𝑗
(2,𝑚𝑚), … , 𝛼𝛼𝑗𝑗𝑗𝑗

(𝑝𝑝,𝑚𝑚)) is the coefficient matrix of Eq. (1).  It is 

related to the mutual interaction matrix among nodes, which determines the dis-
placements of nodes in a latent space 𝐻𝐻𝑝𝑝, as shown below.  We assume that this matrix 
is constant over time.  In any case, Eq. (1) assumes that the force acting on each of the 
nodes in 𝐻𝐻𝑝𝑝 is a polynomial function of the differences in coordinates between one node 
and the other nodes in the space.   

Insert Figure 3 about here 
This equation should be contrasted with Newton’s second law of motion, i.e., F=ma, in 

that the force exerting on a celestial body is proportional to the second derivatives of it’s 
coordinates in the Euclidean space, E3, with respect to time.  The force assumed by Eq. 
(1) might possibly be applied to international trade systems, neural network systems, 
interorgan communication network systems, social network systems, and so on. 
  The purpose of our elementary theory is two-fold.  One is theoretical, and the other 
practical.  For theoretical purposes, we compute the trajectories of nodes using Eq. (1) 
with a mutual interaction matrix, by setting an arbitrary initial configuration of nodes.  
Then, we classify the patterns of changes in digraphs over time according to the patterns 
of trajectories of nodes over time. 

For practical purposes, we may first observe a proximity matrix at an instant of time 
as the initial weight matrix of digraph under study.  In Chino (2017a, b), we showed 
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Figure 3.   Trajectories of Eq. (5) with a special case of A3. This 
figure was reproduced from Figure 7–4 in Chino 
(2017a) as well as Figure 11 in Chino (2018).

An Elementary Theory of a Dynamic Weighted Digraph (1)

systems, and so on.
 The purpose of our elementary theory is two-fold. One is 
theoretical, and the other practical. For theoretical purpos-
es, we compute the trajectories of nodes using Eq. (1) with 
a mutual interaction matrix, by setting an arbitrary initial 
configuration of nodes. Then, we classify the patterns of 
changes in digraphs over time according to the patterns of 
trajectories of nodes over time.
 For practical purposes, we may first observe a proximity 
matrix at an instant of time as the initial weight matrix of 
digraph under study.
 In Chino (2017a, b), we showed some theoretical results 
of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case:
 In this case, Eq. (1) becomes
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some theoretical results of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case: 

 In this case, Eq. (1) becomes 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛),                     (2) 

 
If we use the vector notations, e.g., 𝒛𝒛𝑛𝑛 = (𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then Eq. (2) has a simple expression, 

 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨2𝒛𝒛𝑛𝑛,  where      𝑨𝑨2 =  (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
),               (3) 

and we call 𝑨𝑨2 as the mutual interaction matrix in the dyadic case.  The eigenvalues of 
𝑨𝑨2 are 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 and 1. 

Insert Figure 4 about here 
  Similarly, if p=1, m=1, and N=3, i.e., the triadic case, then Eq. (2) can be written as 
 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛  + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

.                 (4) 

 
If we denote the mutual interaction matrix in the triadic case as 𝑨𝑨3, and if we use 𝒛𝒛𝑛𝑛 =

(𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then we have 
 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨3𝒛𝒛𝑛𝑛,                                  (5) 

where 𝑨𝑨𝟑𝟑 = (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗
−𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗

). 

Matrices 𝑨𝑨2 and 𝑨𝑨3 are considered as special cases of the mutual interaction matrices 
of our model.  As pointed out in Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over time. 
  For example, dynamical scenarios of the solution curve of the dyadic linear difference 
equation described by Eq. (3) have three patterns depending on the absolute value of the 
eigenvalue, 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗, as follows (Chino, 2017): 

              {
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                   𝑑𝑑𝑖𝑖 |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| > 1 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑 𝑑𝑑𝑖𝑖 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙,           𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| = 1
𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                  𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| < 1

  .   

Figure 2 shows the trajectories of two members (nodes) in H in the special case when the 
solution curves converge. 

Insert Figure 5 about here 
Similarly, dynamical scenarios of the solution curve of the triadic linear difference 

. (2)

If we use the vector notations, e.g., zn = (zjn, zkn)t, then Eq. 
(2) has a simple expression,

 

5 
 

some theoretical results of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case: 

 In this case, Eq. (1) becomes 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛),                     (2) 

 
If we use the vector notations, e.g., 𝒛𝒛𝑛𝑛 = (𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then Eq. (2) has a simple expression, 

 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨2𝒛𝒛𝑛𝑛,  where      𝑨𝑨2 =  (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
),               (3) 

and we call 𝑨𝑨2 as the mutual interaction matrix in the dyadic case.  The eigenvalues of 
𝑨𝑨2 are 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 and 1. 

Insert Figure 4 about here 
  Similarly, if p=1, m=1, and N=3, i.e., the triadic case, then Eq. (2) can be written as 
 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛  + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

.                 (4) 

 
If we denote the mutual interaction matrix in the triadic case as 𝑨𝑨3, and if we use 𝒛𝒛𝑛𝑛 =

(𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then we have 
 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨3𝒛𝒛𝑛𝑛,                                  (5) 

where 𝑨𝑨𝟑𝟑 = (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗
−𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗

). 

Matrices 𝑨𝑨2 and 𝑨𝑨3 are considered as special cases of the mutual interaction matrices 
of our model.  As pointed out in Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over time. 
  For example, dynamical scenarios of the solution curve of the dyadic linear difference 
equation described by Eq. (3) have three patterns depending on the absolute value of the 
eigenvalue, 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗, as follows (Chino, 2017): 

              {
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                   𝑑𝑑𝑖𝑖 |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| > 1 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑 𝑑𝑑𝑖𝑖 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙,           𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| = 1
𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                  𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| < 1

  .   

Figure 2 shows the trajectories of two members (nodes) in H in the special case when the 
solution curves converge. 

Insert Figure 5 about here 
Similarly, dynamical scenarios of the solution curve of the triadic linear difference 

 (3)

and we call A2 as the mutual interaction matrix in the dyadic 
case. The eigenvalues of A2 are 1 + ajk + akj and 1.

Figure 4.   Configurations of nodes as snapshots of their trajecto-
ries.

 Similarly, if p=1, m=1, and N=3, i.e., the triadic case, 
then Eq. (2) can be written as
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some theoretical results of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case: 

 In this case, Eq. (1) becomes 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛),                     (2) 

 
If we use the vector notations, e.g., 𝒛𝒛𝑛𝑛 = (𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then Eq. (2) has a simple expression, 

 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨2𝒛𝒛𝑛𝑛,  where      𝑨𝑨2 =  (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
),               (3) 

and we call 𝑨𝑨2 as the mutual interaction matrix in the dyadic case.  The eigenvalues of 
𝑨𝑨2 are 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 and 1. 

Insert Figure 4 about here 
  Similarly, if p=1, m=1, and N=3, i.e., the triadic case, then Eq. (2) can be written as 
 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛  + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

.                 (4) 

 
If we denote the mutual interaction matrix in the triadic case as 𝑨𝑨3, and if we use 𝒛𝒛𝑛𝑛 =

(𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then we have 
 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨3𝒛𝒛𝑛𝑛,                                  (5) 

where 𝑨𝑨𝟑𝟑 = (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗
−𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗

). 

Matrices 𝑨𝑨2 and 𝑨𝑨3 are considered as special cases of the mutual interaction matrices 
of our model.  As pointed out in Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over time. 
  For example, dynamical scenarios of the solution curve of the dyadic linear difference 
equation described by Eq. (3) have three patterns depending on the absolute value of the 
eigenvalue, 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗, as follows (Chino, 2017): 

              {
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                   𝑑𝑑𝑖𝑖 |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| > 1 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑 𝑑𝑑𝑖𝑖 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙,           𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| = 1
𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                  𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| < 1

  .   

Figure 2 shows the trajectories of two members (nodes) in H in the special case when the 
solution curves converge. 

Insert Figure 5 about here 
Similarly, dynamical scenarios of the solution curve of the triadic linear difference 

 (4)

 If we denote the mutual interaction matrix in the triadic 
case as A3, and if we use zn = (zjn, zkn, zln)t, then we have
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some theoretical results of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case: 

 In this case, Eq. (1) becomes 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛),                     (2) 

 
If we use the vector notations, e.g., 𝒛𝒛𝑛𝑛 = (𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then Eq. (2) has a simple expression, 

 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨2𝒛𝒛𝑛𝑛,  where      𝑨𝑨2 =  (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
),               (3) 

and we call 𝑨𝑨2 as the mutual interaction matrix in the dyadic case.  The eigenvalues of 
𝑨𝑨2 are 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 and 1. 

Insert Figure 4 about here 
  Similarly, if p=1, m=1, and N=3, i.e., the triadic case, then Eq. (2) can be written as 
 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛  + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

.                 (4) 

 
If we denote the mutual interaction matrix in the triadic case as 𝑨𝑨3, and if we use 𝒛𝒛𝑛𝑛 =

(𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then we have 
 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨3𝒛𝒛𝑛𝑛,                                  (5) 
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). 

Matrices 𝑨𝑨2 and 𝑨𝑨3 are considered as special cases of the mutual interaction matrices 
of our model.  As pointed out in Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over time. 
  For example, dynamical scenarios of the solution curve of the dyadic linear difference 
equation described by Eq. (3) have three patterns depending on the absolute value of the 
eigenvalue, 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗, as follows (Chino, 2017): 

              {
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                   𝑑𝑑𝑖𝑖 |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| > 1 
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𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                  𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| < 1

  .   

Figure 2 shows the trajectories of two members (nodes) in H in the special case when the 
solution curves converge. 
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Similarly, dynamical scenarios of the solution curve of the triadic linear difference 
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some theoretical results of our difference equation model described by Eq. (1) in the 
cases when p=1 and m=1, and N=2, i.e., the dyadic case: 

 In this case, Eq. (1) becomes 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛),                     (2) 

 
If we use the vector notations, e.g., 𝒛𝒛𝑛𝑛 = (𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then Eq. (2) has a simple expression, 

 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨2𝒛𝒛𝑛𝑛,  where      𝑨𝑨2 =  (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
),               (3) 

and we call 𝑨𝑨2 as the mutual interaction matrix in the dyadic case.  The eigenvalues of 
𝑨𝑨2 are 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 and 1. 

Insert Figure 4 about here 
  Similarly, if p=1, m=1, and N=3, i.e., the triadic case, then Eq. (2) can be written as 
 

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛  + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

.                 (4) 

 
If we denote the mutual interaction matrix in the triadic case as 𝑨𝑨3, and if we use 𝒛𝒛𝑛𝑛 =

(𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛, 𝑧𝑧𝑗𝑗𝑛𝑛)𝑡𝑡, then we have 
 𝒛𝒛𝑛𝑛+1 = 𝑨𝑨3𝒛𝒛𝑛𝑛,                                  (5) 

where 𝑨𝑨𝟑𝟑 = (
1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗

−𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗
−𝛼𝛼𝑗𝑗𝑗𝑗 −𝛼𝛼𝑗𝑗𝑗𝑗 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗

). 

Matrices 𝑨𝑨2 and 𝑨𝑨3 are considered as special cases of the mutual interaction matrices 
of our model.  As pointed out in Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over time. 
  For example, dynamical scenarios of the solution curve of the dyadic linear difference 
equation described by Eq. (3) have three patterns depending on the absolute value of the 
eigenvalue, 1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗, as follows (Chino, 2017): 

              {
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                   𝑑𝑑𝑖𝑖 |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| > 1 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑 𝑑𝑑𝑖𝑖 𝑙𝑙𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙,           𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| = 1
𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟𝑔𝑔𝑑𝑑,                  𝑑𝑑𝑖𝑖  |1 + 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛼𝛼𝑗𝑗𝑗𝑗| < 1

  .   

Figure 2 shows the trajectories of two members (nodes) in H in the special case when the 
solution curves converge. 
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Similarly, dynamical scenarios of the solution curve of the triadic linear difference 

 Matrices A2 and A3 are considered as special cases of the 
mutual interaction matrices of our model. As pointed out in 
Chino (2017a, b; 2018), patterns of eigenvalues in these 
matrices determine the patterns of trajectories of nodes over 
time.
 For example, dynamical scenarios of the solution curve 
of the dyadic linear difference equation described by Eq. (3) 
have three patterns depending on the absolute value of the 
eigenvalue, 1 + ajk + akj , as follows (Chino, 2017):
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 . 

Figure 2 shows the trajectories of two members (nodes) in 
H in the special case when the solution curves converge.
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Figure 5. Digraphs reproduced from the trajectories of Fig. 2.

 Similarly, dynamical scenarios of the solution curve of 
the triadic linear difference equation described by Eq. (5) 
have roughly four patterns depending on the two eigenval-
ues, λ2, λ3, except λ1 = 1. The two eigenvalues, λ2, λ3, can 
be written as
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equation described by Eq. (5) have roughly four patterns depending on the two eigenvalues, 
𝜆𝜆2, 𝜆𝜆3, except 𝜆𝜆1 = 1.  The two eigenvalues, 𝜆𝜆2, 𝜆𝜆3, can be written as 

1 + 1
2∑ ∑ 𝛼𝛼𝑔𝑔ℎ3

ℎ
3
𝑔𝑔≠ℎ ± √𝐷𝐷,  

and determine the patterns of trajectories, where D  is a special quadratic function of 
𝛼𝛼𝑔𝑔ℎ′𝑠𝑠. 

Fig. 3 shows the trajectories of Eq. (5) with a special case of 𝑨𝑨3, where 

𝑨𝑨3 = (
1, 0.01(1 − 𝑖𝑖), −0.01(1 − 𝑖𝑖)

0.02(1 − 𝑖𝑖), 1, −0.01(1 − 𝑖𝑖)
0.02(1 − 𝑖𝑖), 0.02(1 − 𝑖𝑖), 1

).               (6) 

Here, the initial configuration of nodes is assumed to be a tripartite deadlock.  Since the 
eigenvalues of this matrix are 1.0, 0.98+0.02i, 0.97+0.03i, all the trajectories of this system 
converge to a point (i.e., 1+0.5774i in 𝐻𝐻1), as depicted in Fig. 3. 

If we take snapshots of the three nodes on the trajectories in Fig. 3 at times, say, n=1, 
20, 60, 1000, we have the configurations of nodes at these times.  Fig. 4 shows them. 

If we reproduce the weight matrices at time, n=1, 20, 60, 1000 from the configurations 
shown above, the corresponding digraphs can be drawn.  To do this job, we may apply the 
formula which connects the proximity from node j to node k with the coordinates of nodes 
in the p-dimensional Hilbert space.  That is, 

𝑠𝑠𝑗𝑗𝑗𝑗 = − 1
2 {‖𝒗𝒗𝒋𝒋 − 𝒗𝒗𝒌𝒌‖

2 + ‖𝒗𝒗𝒋𝒋 − 𝑖𝑖𝒗𝒗𝒌𝒌‖
2} + (‖𝒗𝒗𝒋𝒋‖

2 + ‖𝒗𝒗𝒌𝒌‖2).            (7) 

Here, the proximity 𝑠𝑠𝑗𝑗𝑗𝑗  is real and equals 𝑤𝑤𝑗𝑗𝑗𝑗 , while the coordinates of nodes, 𝒗𝒗𝒋𝒋  is 
complex and equals 𝒛𝒛𝒋𝒋 in this context in HFM (Chino & Shiraiwa, 1993). 
 We show the corresponding digraphs in Fig. 5.  It should be noticed that not only the 
self-proximities of nodes but also the proximities among nodes are the same values at the 
last iteration.  Such a result can be confirmed by applying Eq. (7) to the case where 𝒗𝒗𝒋𝒋 =
𝒗𝒗𝒌𝒌. 

Insert Figure 6 about here 
 
3. Dynamic weighted digraph when the latent dynamics have quadratic terms 
 

In Chino (2017a, 2018), we discussed a bit about our difference equation model de-
scribed by Eq. (2) when N=2, and q=2, i.e.,  

{
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗

(1)(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗
(2)(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

2,
𝑧𝑧𝑗𝑗,𝑛𝑛+1 = 𝑧𝑧𝑗𝑗𝑛𝑛 + 𝛼𝛼𝑗𝑗𝑗𝑗

(1)(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛) + 𝛼𝛼𝑗𝑗𝑗𝑗
(2)(𝑧𝑧𝑗𝑗𝑛𝑛 − 𝑧𝑧𝑗𝑗𝑛𝑛)

2.
                 (8) 

  As discussed there, this type of system has a very desirable property in that we can 
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equation described by Eq. (5) have roughly four patterns depending on the two eigenvalues, 
𝜆𝜆2, 𝜆𝜆3, except 𝜆𝜆1 = 1.  The two eigenvalues, 𝜆𝜆2, 𝜆𝜆3, can be written as 
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).               (6) 

Here, the initial configuration of nodes is assumed to be a tripartite deadlock.  Since the 
eigenvalues of this matrix are 1.0, 0.98+0.02i, 0.97+0.03i, all the trajectories of this system 
converge to a point (i.e., 1+0.5774i in 𝐻𝐻1), as depicted in Fig. 3. 

If we take snapshots of the three nodes on the trajectories in Fig. 3 at times, say, n=1, 
20, 60, 1000, we have the configurations of nodes at these times.  Fig. 4 shows them. 

If we reproduce the weight matrices at time, n=1, 20, 60, 1000 from the configurations 
shown above, the corresponding digraphs can be drawn.  To do this job, we may apply the 
formula which connects the proximity from node j to node k with the coordinates of nodes 
in the p-dimensional Hilbert space.  That is, 
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2 {‖𝒗𝒗𝒋𝒋 − 𝒗𝒗𝒌𝒌‖

2 + ‖𝒗𝒗𝒋𝒋 − 𝑖𝑖𝒗𝒗𝒌𝒌‖
2} + (‖𝒗𝒗𝒋𝒋‖

2 + ‖𝒗𝒗𝒌𝒌‖2).            (7) 
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 We show the corresponding digraphs in Fig. 5.  It should be noticed that not only the 
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last iteration.  Such a result can be confirmed by applying Eq. (7) to the case where 𝒗𝒗𝒋𝒋 =
𝒗𝒗𝒌𝒌. 
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Here, the proximity sjk is real and equals Wjk, while the co-
ordinates of nodes, νj is complex and equals Zj in this con-
text in HFM (Chino & Shiraiwa, 1993).

 We show the corresponding digraphs in Fig. 5. It should 
be noticed that not only the self-proximities of nodes but 
also the proximities among nodes are the same values at the 
last iteration. Such a result can be confirmed by applying 
Eq. (7) to the case where νj = νk.

Figure 6.   Julia set for            with a parabolic 
fixed point (0.5), two repelling periodic points of period 
2 (−0.5 ± i), and six repelling periodic points of period 
3 with the © mark, and twelve repelling periodic points 
of three 4-sycles. This figure was reproduced from 
Figure 11–1 in Chino (2017a) as well as Figure 1 in 
Chino (2018).
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Figure 6. Julia set for 𝑍𝑍𝑗𝑗𝑗𝑗,𝑛𝑛+1 = 𝑍𝑍𝑗𝑗𝑗𝑗,𝑛𝑛2 + 0.25 with a parabolic fixed  

point (0.5), two repelling periodic points of period 2 (−0.5 ± 𝑖𝑖),  
and six repelling periodic points of period 3 with the © mark,  
and twelve repelling periodic points of three 4-sycles. This  
figure was reproduced from Figure 11-1 in Chino (2017a) as well  
as Figure 1 in Chino (2018).  
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 As discussed there, this type of system has a very desira-
ble property in that we can utilize the heritage of the theory 
of the complex dynamical system developed in mathematics 
directly in classifying its trajectories. In fact, defining a new 
variable, ujkn = zjn − zkn, and transforming it linearly, we 
have a new system
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utilize the heritage of the theory of the complex dynamical system developed in 
mathematics directly in classifying its trajectories.  In fact, defining a new variable, 
𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑗𝑗𝑗𝑗, and transforming it linearly, we have a new system 

                            𝑍𝑍𝑗𝑗𝑗𝑗,𝑗𝑗+1 = 𝑍𝑍𝑗𝑗𝑗𝑗,𝑗𝑗
2 + 𝛾𝛾𝑗𝑗𝑗𝑗

(1),                                (9) 

where 𝛾𝛾𝑗𝑗𝑗𝑗
(1) = 1

2 𝛽𝛽𝑗𝑗𝑗𝑗
(1) − 1

4 [𝛽𝛽𝑗𝑗𝑗𝑗
(1)]

2
,  and 𝛽𝛽𝑗𝑗𝑗𝑗

(1) = 1 + 𝛼𝛼𝑗𝑗𝑗𝑗
(1) + 𝛼𝛼𝑗𝑗𝑗𝑗

(1) .  Depending on the value of 

𝛾𝛾𝑗𝑗𝑗𝑗
(1), we have the Mandelbrot set (Mandelbrot, 1977). 

  For example, in the case when 𝛾𝛾𝑗𝑗𝑗𝑗
(1) = 0.25,  that is, 𝑍𝑍𝑗𝑗𝑗𝑗,𝑗𝑗+1 = 𝑍𝑍𝑗𝑗𝑗𝑗,𝑗𝑗

2 + 0.25, this equation 

is contained in the Mandelbrot set, and the corresponding trajectory is known as the 
“cauliflower set”, which is shown in Fig. 6. 

Insert Figure 7 about here 
As pointed in Chino (2017a, 2018), we can utilize various theoretical results established 

in the complex dynamical system, in examining the dynamical scenarios of 𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗.  Some 
of the key phrases in these results are the fixed point as well as the periodic point (orbit), 
the multiplier of these points, and the Fatou set and Julia set (e.g., Carleson & Gamelin, 
1993). 

First, the fixed point and the multiplier of these points are defined as follows: 
Suppose f  is a holomorphic function, that is, an analytic function 

in a complex space. Then, 𝑧𝑧𝑓𝑓 is called a fixed point if f(𝑧𝑧𝑓𝑓) = 𝑧𝑧𝑓𝑓.  The number λ = f´(𝑧𝑧𝑓𝑓) 
is called the multiplier of the fixed point.  Here,  f´is the first derivative of f  with 
respect to 𝑧𝑧𝑓𝑓.   

Insert Figure 8 about here 
Second, the multiplier determines the property of the fixed point as follows (e.g., 

Carleson & Gamelin, 1993, p.27): 
(1) Attracting if |λ| < 1.  (If λ= 0, we refer to a superattracting fixed point.) 
(2) Repelling if |λ| > 1.   
(3) Rationally neutral if |λ| = 1 and λ𝑗𝑗=1 for some integer n. 
(4) Irrationally neutral if |λ| = 1 but λ𝑗𝑗 is never 1. 

Here, function f in the case of the Mandelbrot set is described as follows: 
                           f(z) = 𝑧𝑧2 + 𝑐𝑐,                                (10) 

Third, the periodic point and the multiplier of these points are defined as follows (e.g., 
Milnor, 2000): 

A periodic orbit or “cycle” is the function such that 
                     f: 𝑧𝑧0 ↦ 𝑧𝑧1 ↦ ⋯ ↦ 𝑧𝑧𝑚𝑚−1 ↦ 𝑧𝑧𝑚𝑚 = 𝑧𝑧0,                        (11) 

 (9)
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Figure 8.   Revised trajectory with initial value i in C after 100 
iterations.
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 As pointed in Chino (2017a, 2018), we can utilize vari-
ous theoretical results established in the complex dynamical 
system, in examining the dynamical scenarios of Zjkn. Some 
of the key phrases in these results are the fixed point as well 
as the periodic point (orbit), the multiplier of these points, 
and the Fatou set and Julia set (e.g., Carleson & Gamelin, 
1993).
 First, the fixed point and the multiplier of these points 
are defined as follows:
 Suppose f is a holomorphic function, that is, an analytic 
function in a complex space. Then, zf is called a fixed point 
if f(zf) = zf. The number λ = f′(zf) is called the multiplier of 
the fixed point. Here, f´is the first derivative of f with re-
spect to zf.
 Second, the multiplier determines the property of the 
fixed point as follows (e.g., Carleson & Gamelin, 1993, p. 
27):
 (1) Attracting if |λ| < 1. (If λ= 0, we refer to a superat-

tracting fixed point.)
 (2) Repelling if |λ| > 1.
 (3) Rationally neutral if |λ| = 1 and λn = 1 for some in-

teger n.
 (4) Irrationally neutral if |λ| = 1 but λn is never 1.
Here, function f in the case of the Mandelbrot set is de-
scribed as follows:
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As pointed in Chino (2017a, 2018), we can utilize various theoretical results established 

in the complex dynamical system, in examining the dynamical scenarios of 𝑍𝑍𝑗𝑗𝑗𝑗𝑗𝑗.  Some 
of the key phrases in these results are the fixed point as well as the periodic point (orbit), 
the multiplier of these points, and the Fatou set and Julia set (e.g., Carleson & Gamelin, 
1993). 

First, the fixed point and the multiplier of these points are defined as follows: 
Suppose f  is a holomorphic function, that is, an analytic function 

in a complex space. Then, 𝑧𝑧𝑓𝑓 is called a fixed point if f(𝑧𝑧𝑓𝑓) = 𝑧𝑧𝑓𝑓.  The number λ = f´(𝑧𝑧𝑓𝑓) 
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respect to 𝑧𝑧𝑓𝑓.   
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the first derivative of the m-fold iterate f °m at a point of the 
orbit, and 
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for a holomorphic map.  Then, the multiplier λ of the orbit is the first derivative of the m-
fold iterate 𝑓𝑓°𝑚𝑚 at a point of the orbit, and  
 

                       λ = (𝑓𝑓°𝑚𝑚)′(𝑧𝑧𝑖𝑖) =  f´(𝑧𝑧1) · f´(𝑧𝑧2) · … ·  f´(𝑧𝑧𝑚𝑚) ·                  (12) 

In the case of cauliflower set, c equals 0.25, and thus several points on the Julia set are 
identified as parabolic fixed points, repelling periodic points of period 2, and repelling 
periodic points of period 3, which is shown in Fig. 6. 

Insert Figure 9 about here 
At this point, it should be noticed that the major concern of the complex dynamical 

system is to examine the local qualitative behaviors of the fixed points and periodic points 
of the system under consideration, using the multipliers of these special points.  In 
contrast, the major concern of our complex difference systems is to examine not only the 
local qualitative behaviors of the fixed points as well as the periodic points but also the 
global qualitative behaviors of nodes in H.  This means that even in the dyadic system 
described by Eq. (8), we must examine not only the local qualitative behaviors of the 
linearly transformed variable 𝑍𝑍𝑗𝑗𝑗𝑗,𝑛𝑛 in Eq. (9) but also the global qualitative behaviors of 
the original dyadic system described by Eq. (8). 

One method to do the latter job may be to compute the Lyapunov exponent of the dyadic 
system.  We began the simulation study of the dyadic system whose qualitative behaviors 
of the linearized system described by Eq. (9) is simple.  Such a linearized system may be 

the system such that 𝛾𝛾𝑗𝑗𝑗𝑗
(1) = 0 in Eq. (9).  To attain this value, we set the α′s as 𝛼𝛼𝑗𝑗𝑗𝑗

(1) =

0.9564𝑖𝑖, 𝛼𝛼𝑗𝑗𝑗𝑗
(1) = −1 − 0.9564𝑖𝑖, 𝛼𝛼𝑗𝑗𝑗𝑗

(2) = 0.01, and 𝛼𝛼𝑗𝑗𝑗𝑗
(2) = 1.5375 − 0.9564𝑖𝑖.   

Insert Figure 10 about here 
It is well known that the Julia set of this system is the unit circle with origin 0 in C 

(equivalently, H), where C is the complex plane.  Moreover, it is easy to show that this 
system has two fixed points, 1 and 0 (the origin), and these points are repelling and 
superattracting, respectively.  As a result, when we start from an arbitrary point on the 
unit circle, the trajectory moves chaotically on the circle, at least theoretically.  (Notice 
that this circle is not a fractal since the unit circle is not self-similar.)  As a trial, we set 
the initial value of this system as i on the unit circle in C, since this point is not the fixed 
point of the system. 

However, due to the rounding errors of computer, which is an inevitable phenomenon 
even if we specify a long fixed-decimal format, the trajectory with initial value i runs off 
the unit circle within no greater than, say, 50 iterations.  Fig. 7 shows this. 
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Figure 9.   Revised trajectory with initial value i in C after100 
iterations.

Naohito CHINO

as                     , and  

           .

Figure 10.   Trajectories of four indices of the original dyadic sys-
tem. 10-a and 10-b are those of node j (member A) 
and node k (member B), respectively. 10-c is the tra-
jectory of the proximity from node j to node k. 10-d is 
the trajectory of the angle from node j to node k.

 It is well known that the Julia set of this system is the 
unit circle with origin 0 in C (equivalently, H), where C is 
the complex plane. Moreover, it is easy to show that this 
system has two fixed points, 1 and 0 (the origin), and these 
points are repelling and superattracting, respectively. As a 
result, when we start from an arbitrary point on the unit cir-
cle, the trajectory moves chaotically on the circle, at least 
theoretically. (Notice that this circle is not a fractal since the 

unit circle is not self-similar.) As a trial, we set the initial 
value of this system as i on the unit circle in C, since this 
point is not the fixed point of the system.
 However, due to the rounding errors of computer, which 
is an inevitable phenomenon even if we specify a long 
fixed-decimal format, the trajectory with initial value i runs 
off the unit circle within no greater than, say, 50 iterations. 
Fig. 7 shows this.
 In such a case, however, we can revise the trajectory, be-
cause the unit circle as a Julia set has an explicit mathemati-
cal expression. That is, every time when the trajectory runs 
off the unit circle, we may put it back on the unit circle. 
Then, the trajectory remains the unit circle. Fig. 8 shows 
the revised trajectory after 100 iterations, while Fig. 9  
depicts it after 10,000 iterations. The trajectory in Fig. 9  
almost fills out the unit disk chaotically after 10,000 itera-
tions.
 Of course, the strict Lyapunov exponent of this one-di-
mensional system, Zjk, n+1 = Zjk, n2, is λ= ln 2 = 0.69314718…, 
thus the system has chaos.

Figure 11.   The largest Lyapunov exponent of the original two 
dimensional system.

 Next, we shall proceed to examine qualitative behaviors 
of the original dyadic system described by Eq. (8).
 First, we computed the largest Lyapunov exponent of this dy-
adic system. Fig. 11 shows it. It converges to 0.693147148…, 
which is very close to that of the linearized system Zjk, n+1 = Zjk, n2 
discussed above. This result clearly shows that the dyadic system 
has chaos.
 Second, we shall zoom up trajectories shown in Fig. 10 
to examine further the features of these trajectories. For ex-
ample, Fig. 12 shows the expanded trajectories of the prox-
imity from A to B (or j to k) from iteration 45,000 to 
46,000. This trajectory is reminiscent of one-dimensional 
random walk or Brownian motion (Brown, 1828).
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even if we specify a long fixed-decimal format, the trajectory with initial value i runs off 
the unit circle within no greater than, say, 50 iterations.  Fig. 7 shows this. 
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Figure 14. Trajectory of the node k after 50,000 iterations.

Figure 15.   Simultaneous plot of the two trajectories shown in 
Figs. 13 and 14.

Figure 16. Trajectories of a simple random walk on the x-axis.

An Elementary Theory of a Dynamic Weighted Digraph (1)

 Third, we show trajectories of the dyadic system after 
50,000 iterations. Figs. 13 and 14 shows those of node j and 
k, respectively.
 In contrast, Fig. 15 shows the simultaneous plot of the 
trajectories depicted in Figs. 13 and 14 using different 
colors, yellow and black.

Figure 12.   Expanded trajectories of 10-c from iteration 45,000 to 
46,000.

Figure 13. Trajectory of the node j after 50,000 iterations.

 Fig. 15 shows that the trajectories of two nodes are very 
close to each other. This point may be contrasted with the 
usual random work as well as the Brownian motion.
 To compare the trajectories of our dyadic system with 
those of the random walk and the Brownian motion, we 
draw Figs. 16 and 17, which are trajectories of a simple 
random walk and a Brownian motion, both on the x-axis.
 Figs. 18 and 19 are trajectories of a two-dimensional ran-
dom walk and a planar Brownian motion after 20,000 itera-
tions.
 It is interesting to note that trajectories of our special dy-
adic system are reminiscent of the random walk or the 
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Figure 17.   Trajectory of a planar Brownian Motion after 20000 
iterations.

Figure 19. Planar Brownian motion after 20000 iterations.

Figure 18.   Two-dimensional simple random walk after 20000  
iterations.

Naohito CHINO

Brownian motion.

4. Conclusion

 In this paper we propose an elementary theory of a dy-
namical weighted digraph. In this theory we first assume 
that the weight matrix denotes the proximity strengths 
among nodes at any instant of time, and that it varies as 
time proceeds. Then we apply HFM (the Hermitian Form 
Model) (Chino & Shiraiwa, 1993) to the weight matrix, and 
obtain the configuration of objects (nodes) at any instant of 
time in a p-dimensional Hilbert space, Hp or an indefinite 
metric space. Here, we assume that the Hermitian matrix 
corresponding to the weight matrix is positive semi-definite, 
in the most general case and its weights are measured at a 
ratio level. Then, we have the correspondence among di-
graph, weight matrix, and configuration of objects (nodes) 
at any instant of time. As a result, changes in digraphs over 
time are considered as changes in configurations of nodes 
in Hp over time.
 Our elementary theory of dynamic digraph then assumes 
that these changes in configurations of nodes can be de-
scribed by a set of complex nonlinear difference equations 
in Hp in the most general case. The purpose of our theory is 
to classify elementary patterns of changes in digraphs over 
time, by assuming that there exists a latent process which 
governs these changes in digraph, which can be described 
by a set of complex nonlinear difference equations in Hp.
 In this paper, we restrict the dimension p of the state 
space to one, and conducted some simulation studies in or-
der to classify elementary patterns of changes in digraphs 
over time. It is easy to show that such patterns can be enu-

merated simply in the case when the latent dynamics are 
linear (Chino, 2017a, b; Chino, 2018). Our major results in 
this paper are concerned with the patterns in the case when 
the latent dynamics have quadratic terms especially in the 
case where N=2 and q=2 in Eq. (1), i.e., Eq. (8). As dis-
cussed elsewhere (Chino, 2017a, 2018), this type of system 
has a very desirable property in that we can utilize the herit-
age of the theory of the complex dynamical system devel-
oped in mathematics directly in classifying its trajectories.
 In fact, the transformed new system of Eq. (8), i.e., Eq. (9) 
becomes the Mandelbrot set (Mandelbrot, 197) in some 
cases. Furthermore, the original quadratic system, Eq. (8) 
also exhibits chaotic behaviors which are very similar to 
the random work or the Brownian motion. Moreover, analy-
ses of the first three quantities of Fig. 10 by the Higuchi’s 
method (Higuchi, 1988) clearly show that these quantities 
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have the characteristic of fractal.
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